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Abstract

The heat and mass transfer in the capillary porous structure of a loop heat pipe (LHP) is numerically studied and the LHP boiling
limit is investigated. The mass, momentum and energy equations are solved numerically using the finite element method for an evapo-
rator cross section. When a separate vapor region is formed inside the capillary structure, the shape of the free boundary is calculated by
satisfying the mass and energy balance conditions at the interface. The superheat limits in the capillary structure are estimated by using
the cluster nucleation theory. An explanation is provided for the robustness of LHPs to the boiling limit.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Two-phase capillary pumped heat transfer devices are
becoming standard tools to meet the increasingly demand-
ing thermal control problems of high-end electronics.
Among these devices, loop heat pipes (LHPs) are particu-
larly interesting because of several advantages in terms of
robust operation, high heat transport capability, operabil-
ity against gravity, flexible transport lines and fast diode
action. As shown in Fig. 1, a typical LHP consists of an
evaporator, a reservoir (usually called a compensation
chamber), vapor and liquid transport lines and a con-
denser. The cross section of a typical evaporator is also
shown in Fig. 1. The evaporator consists of a liquid-pas-
sage core, a capillary porous wick, vapor-evacuation
grooves and an outer casing. In many LHPs, a secondary
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wick between the reservoir and the evaporator is also used
to ensure that liquid remains available to the main wick at
all times. Heat is applied to the outer casing of the evapo-
rator, leading to the evaporation of the liquid inside the
wick. The resulting vapor is collected in the vapor grooves
and pushed through the vapor transport line towards the
condenser. The meniscus formed at the surface or inside
the capillary structure naturally adjusts itself to establish
a capillary head that matches the total pressure drop in
the LHP. The subcooled liquid from the condenser returns
to the evaporator core through the reservoir, completing
the cycle. Detailed descriptions of the main characteristics
and working principles of the LHPs can be found in
Maidanik et al. [1] and Ku [2].

In this present work, the heat and mass transfer inside
the evaporator of an LHP is considered. The formulation
of the problem is similar to a previous work performed
by Demidov and Yatsenko [3], where the capillary struc-
ture contains a vapor region under the fin separated from
the liquid region by a free boundary as shown in Fig. 2.
Demidov and Yatsenko [3] have developed a numerical
procedure and studied the growth of the vapor region
under increasing heat loads. They also present a qualitative
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Nomenclature

cp specific heat at constant pressure [J kg�1 K�1]
hc convection heat transfer coefficient [W m�2 K�1]
hi interfacial heat transfer coefficient [W m�2 K�1]
hfg latent heat of evaporation [J kg�1]
Jnc critical nucleation rate [nuclei m�3 s�1]
k thermal conductivity [W m�1 K�1]
K permeability [m2]
L length [m]
p pressure [Pa]
Dp pressure drop across wick [Pa]
Pe Peclet number
Qb heat load for boiling limit [W]
qin applied heat flux [W m�2]
Qin applied heat load [W]
r radius [m]
rp pore radius [m]
Re Reynolds number
t thickness [m]
T temperature [K]
u velocity vector [m s�1]

Greek symbols

h angle [degrees]
l viscosity [Pa s]
q density [kg m�3]
u porosity
r liquid–vapor surface tension [N m�1]

Subscripts

c casing
eff effective
g groove
in inlet
int interface
l liquid
max maximum
n normal component
sat saturation
v vapor
w wick
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analysis of the additional evaporation from the meniscus
formed in the fin–wick corner when the vapor region is
small without exceeding the fin surface. They report
that the evaporation from this meniscus could be much
higher than that from the surface of the wick and designs
facilitating the formation of the meniscus would be desir-
able. Figus et al. [4] have also presented a numerical solu-
tion for the problem posed by Demidov and Yatsenko [3]
using to a certain extent similar boundary conditions and
a different method of solution. First, the solutions are
obtained for a single pore-size distribution by using the
Darcy model. Then, the solution method is extended to a
wick with a varying pore-size distribution by using a two-
dimensional pore network model. An important conclusion
of this work is that the pore network model results are
nearly identical to those of the Darcy model for an ordered
single pore-size distribution. On the basis of this study, we
consider a capillary structure with an ordered pore distri-
bution possessing a characteristics single pore size. A sim-
ilar problem has also been studied analytically by Cao and
Faghri [5]. Unlike [3,4], a completely liquid-saturated wick
is considered. Therefore, the interface is located at the sur-
face of the wick. They indicate that the boiling limit inside
the wick largely depends on the highest temperature under
the fin. This statement needs further investigation espe-
cially when a vapor region under the fin is present. In a
later study, Cao and Faghri [6] have extended their work
to a three-dimensional geometry, where a two-dimensional
liquid in the wick and three-dimensional vapor flow in the
grooves separated by a flat interface at the wick surface is
considered. A qualitative discussion of the boiling limit in a
capillary structure is provided. They also compare the
results of the two-dimensional model without the vapor
flow in the grooves and three-dimensional model and con-
clude that reasonably accurate results can be obtained by a
two-dimensional model especially when the vapor velo-
cities are small for certain working fluids such as Freon-11
and ammonia. Based on these results, in our work, we con-
sider a two-dimensional geometry to simplify the formula-
tion of the problem. All these referenced works assume a
steady-state process. Dynamic phenomena and specifically
start-up is also extensively studied [7,8]. The superheat at
the start-up and temperature overshoots is still not well
understood. In this work, the transient regimes and start-
up are not investigated.

One of the goals of the present study is a detailed inves-
tigation of the boiling limit in a capillary structure. There-
fore, the completely liquid-saturated and vapor–liquid wick
cases are both studied. The boiling limit in a porous struc-
ture is calculated by using the method developed by Mish-
kinis and Ochterbeck [9] based on the cluster nucleation
theory of Kwak and Panton [10]. Our primary interest in
this study is LHPs. In comparison, the previously refer-
enced works focus primarily on capillary pumped loops
(CPLs), a closely related two-phase heat transfer device
to an LHP. Unlike in a CPL, the proximity of the reservoir
to the evaporator in an LHP ensures that the wick is con-
tinuously supplied with liquid. However, there is no signif-
icant difference in the mathematical modeling of both
devices especially because only a cross section of the evap-
orator is studied. The main difference here is that LHPs
easily tolerate the use of metallic wicks with very small pore
sizes, with a typical effective pore radius of 1 lm, resulting
in larger available capillary pressure heads.



Fig. 2. Schematic of evaporation inside the evaporator.

Fig. 3. Computational domain and coordinate system.

Fig. 1. Schematic of a typical LHP and cross section of the evaporator.

T. Kaya, J. Goldak / International Journal of Heat and Mass Transfer 49 (2006) 3211–3220 3213
2. Mathematical formulation

A schematic of the computational model for the wick
segment studied is shown in Fig. 3. Because of the symme-
try, a segment of the evaporator cross section is considered,
which is between the centerlines of the fin and adjacent
vapor groove. The numerical solutions for this geometry
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are obtained for two separate configurations. At low heat
loads, the wick is entirely saturated by the liquid. At higher
heat loads, the wick contains two regions divided by an
interface as shown in Fig. 3: an all-vapor region in the
vicinity of the fin and a liquid region in the remaining part
of the wick. Heat is applied on the exterior walls of the cas-
ing and it is transferred through the fin and wick to the
vapor–liquid interface. This leads to the evaporation of
the liquid at the interface and thus the flow of the vapor
into the grooves. For the vapor–liquid wick, the vapor
formed inside the wick is pushed towards the grooves
through a small region at the wick–groove border. In both
of the cases, as a result of the pressure difference across the
wick, the liquid from the core replaces the outflowing
vapor. Under a given heat load, the system reaches the
steady state and the operation is maintained as long as
the heat load is applied.

The mathematical model adopted in this work is based
on the following assumptions: the process is steady state;
the capillary structure is homogenous and isotropic; radia-
tive and gravitational effects are negligible; the fluid is
Newtonian and has constant properties at each phase;
and there is local thermal equilibrium between the porous
structure and the working fluid. Many of these assump-
tions are similar to those made in Demidov and Yatsenko
[3] and Figus et al. [4]. In addition, we also take into
account convective terms in the energy (advection–diffu-
sion) equation. The validity of the Darcy equation for
the problem studied is also discussed. Under these assump-
tions, the governing equations for vapor and liquid phases
(continuity, Darcy and energy) are as follows:

r � u ¼ 0 ð1Þ

u ¼ �K
l
rp ð2Þ

qcprðuT Þ ¼ keffr2T ð3Þ

It should be noted that the Darcy solver first calculates the
pressure from the Laplace equation for pressure ($2p = 0),
which is obtained by combining Eqs. (1) and (2). The vapor
flow in the groove region is not solved to simplify the prob-
lem. The boundary conditions for the liquid-saturated wick
are described as follows:

At r = ri

p ¼ pcore; T ¼ T sat ð4Þ
At r = ro and hA 6 h 6 hC

un ¼ �
keff

qlhfg

oT
on
; keff

oT
on
¼ hiðT � T vÞ ð5Þ

At r = ro and hC 6 h 6 hD

op
on
¼ 0; kc

oT
on
¼ keff

oT
on

ð6Þ

At r = rg and hA 6 h 6 hC

�kc

oT
on
¼ hcðT � T vÞ ð7Þ
At r = rc

kc

oT
on
¼ qin ð8Þ

At h = hA and ri 6 r 6 ro and rg 6 r 6 rc

op
oh
¼ 0;

oT
oh
¼ 0 ð9Þ

At h = hC and ro 6 r 6 rg

�kc

oT
on
¼ hcðT � T vÞ ð10Þ

At h = hD and ri 6 r 6 rc

op
oh
¼ 0;

oT
oh
¼ 0 ð11Þ

In the equations above, (o/on) represents the differential
operator along the normal vector to a boundary. The
boundary conditions for the wick with the separate vapor
and liquid regions are identical to the above equations ex-
cept along the wick–groove boundary and for the vapor–
liquid interface inside the wick. The following equations
summarize these additional boundary conditions for the
vapor–liquid wick:

At r = ro and hA 6 h 6 hB

un ¼ �
keff

qlhfg

oT
on
; keff

oT
on
¼ hiðT � T vÞ ð12Þ

At r = ro and hB 6 h 6 hC

p ¼ pv;
oT
on
¼ 0 ð13Þ

The interface is assumed to have zero thickness. Sharp
discontinuities of the material properties are maintained
across the interface. The interfacial conditions are written
as follows:

The mass continuity condition

ðunÞvqv ¼ ðunÞlql ð14Þ
The energy conservation condition

ðkeffÞv
oT v

on
� ðkeffÞl

oT l

on
¼ ðunÞvqvhfg ð15Þ

For the interface temperature condition, we assume
local thermal equilibrium at the interface inside the wick:

T int ¼ T v ¼ T l ð16Þ
Here, we assume that the interface temperature Tint is given
by the vapor temperature. This condition is used to locate
the vapor–liquid interface as explained in the following
section.

For the interface at the wick–groove border, a convective
boundary condition is used, Eqs. (5) and (12). A temper-
ature boundary condition ignoring the interfacial resistance
is also possible. The interfacial heat transfer coefficient is
calculated by using the relation given in Carey [11] based
on the equation suggested by Silver and Simpson [12].
The heat transfer coefficient hc between the cover plate
and the vapor flow is calculated by using a correlation sug-
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gested by Sleicher and Rouse [13] for fully developed flows
in round ducts. It is extremely difficult to experimentally
determine the heat transfer coefficient hc and a three-dimen-
sional model is necessary to solve the vapor flow in the
grooves. A convective boundary condition is more realistic
since the use of temperature boundary condition implies
hc!1. The convective boundary condition here with a
reasonable heat transfer coefficient also allows some heat
flux through the groove rather than assuming the entire heat
load is transferred to the wick through the fin.

3. Numerical procedure

The governing equations and associated boundary con-
ditions described previously are solved by using the Galer-
kin finite element method. The computational domain
under consideration is discretized with isoparametric and
quadratic triangular elements.

The numerical solution sequence for the all-liquid wick
is straightforward. As the entire process is driven by the
liquid evaporation at the vapor–liquid front, the energy
equation is first solved. The numerical solution sequence
is as follows:

1. Initialize the problem by solving the energy equation
assuming zero velocity inside the wick.

2. Calculate the normal component of the outflow velocity
at the interface between the wick and groove from the
results of the energy equation, which is then used as
an outflow boundary condition for the Darcy solver.

3. Solve the Darcy equation to obtain the liquid velocity
field inside the wick.

4. Solve the energy equation on the entire domain with the
Darcy velocities.

5. Return to step 2 until all equations and boundary con-
ditions are satisfied to a desired level of accuracy.

At high heat loads, when a separate vapor region devel-
ops in the wick, the numerical procedure is more compli-
cated since the location of the interface is also an
unknown of the problem. Therefore, a more involved iter-
ative scheme is necessary. The numerical solution proce-
dure is summarized as follows:

1. Initialize the problem by solving the Laplace equation
for temperature ($2T = 0) on the entire domain for a
liquid-saturated wick.

2. Choose an arbitrary temperature isoline close to the fin
as the initial guess for the location of the vapor–liquid
interface.

3. Solve the energy equation for two separate domains:
casing-vapor region and liquid region. Calculate the
normal conductive heat flux at the vapor–liquid
interface.

4. Solve the Darcy equation separately in the vapor and
liquid regions to calculate the vapor and liquid velocities
inside the wick.
5. Solve the energy equation with the Darcy velocities on
the entire domain by imposing the energy conservation
boundary condition at the interface.

6. Check if the temperature condition at the interface is
satisfied. If it is not satisfied, the interface shape needs
to be modified.

7. Return to step 3 until all equations and boundary con-
ditions are satisfied to obtain a preset level of accuracy.

After each interface update at step 6, the solution
domain needs to be remeshed. As the transient terms are
not maintained in the governing equations, the numerical
procedure presented is not a moving boundary technique
and only the converged solutions have a physical meaning.
For each solution, the static pressure drop across the inter-
face is calculated to make sure that the difference in pres-
sures is less than the maximum available capillary
pressure in the wick (Pv � Pl 6 2r/rp), where the normal
viscous stress discontinuity and inertial forces are
neglected. Thus, the momentum jump condition across
the interface is satisfied as long as the maximum capillary
pressure is not exceeded.

The accommodation coefficient for all the calculations is
assumed to be 0.1, leading to a typical value of hi = 3.32 ·
106 W m�2 K�1. To test the influence of this parameter, the
results are also obtained with the accommodation coeffi-
cients of 0.01 and 1. Since the resulting interfacial heat
transfer coefficients are sufficiently large, the change in
the maximum temperature is negligibly small, on the order
of less than 0.01%. A typical value for the convection heat
transfer coefficient hc is 100 W m�2 K�1. The change of hc

from 100 to 50 results in an increase of less than 3% in
the cover plate maximum temperature. However, the over-
all change in the wick temperatures is negligibly small.

4. Results and discussion

Numerical calculations are performed for the evaporator
section with an outer diameter of 25.4 · 10�3 m as shown in
Fig. 3. The porous wick inside the evaporator has an outer
diameter of 21.9 · 10�3 and a thickness of 7.24 · 10�3 m.
The wick permeability and porosity are K = 4 · 10�14 m2

and u = 60%, respectively. The working fluid is ammonia.
The LHP saturation temperature and pressure difference
on both sides of the wick are calculated by using a one-
dimensional mathematical model. The model is based on
the steady-state energy conservation equations and the
pressure drop calculations along the fluid path inside the
LHP. The details of this mathematical model are presented
in [14]. Fig. 4 represents the calculated saturation temper-
ature and pressure drop values across the wick as a function
of the applied power. The pressure drops and heat transfer
coefficients in the two-phase regions of the LHP are
calculated by using the interfacial shear model of Chen
[15]. Incompressible fully developed fluid flow relations
are used to calculate the pressure drop for the single phase
regions.
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Fig. 5 represents the temperature field and liquid velo-
city vectors when the wick is completely saturated by liquid
at Qin = 100 W. The solution is obtained by solving the
mass conservation, Darcy and energy equations. At this
heat load, by using the one-dimensional mathematical
model, it is calculated that Tsat = 7.81 �C and Dp = 247 Pa.
As the vapor flows along the grooves, it becomes super-
heated due to the heating from the wall. Without solving
the vapor flow in the grooves using a three-dimensional
model, it is not possible to calculate the vapor temperature
in the grooves. Accurate experimental measurements are
also difficult although a range for the vapor superheat
can be deduced based on the wall-temperature measure-
ments. In our calculations, the vapor in the grooves is
assumed to be superheated by 3 �C. A similar approach
is also used in Figus et al. [4]. Thus, Tv = 10.81 �C and
other related parameters for the calculations are as follows:
Pv = 569784.8 Pa, Pcore = 569537.8 Pa, qin = 1254 W m�2,
kc = kw = 14.5 W m�1 K�1, keff = 6.073 W m�1 K�1, and
hi = 2.733 · 106 W m�2 K�1. The thermal properties of
ammonia are calculated at the saturation temperature for
a given applied power using the relations in [16]. In the
numerical calculations, the thermal properties are assumed
constant for a given saturation temperature.
Fig. 5. Velocity vectors and temperature field at Qin = 100 W.
It can be seen from Fig. 5 that, the working fluid evap-
orates at the wick interface under the applied heat load.
The liquid flows from the evaporator core into the wick
and turns toward the interface under the fin. The heat flux
along the fin–wick interface is not constant and varies
around 2000 W m�2. In comparison, in the previously ref-
erenced works [3–5] with an exception in [6], an estimated
constant heat flux is directly applied at the fin–wick surface
and the temperature drop across the casing is ignored due
to the low thermal resistance. Applying the heat at the cas-
ing allows the calculation of the temperature distribution at
the casing surface. At low heat loads, the liquid velocity is
relatively small as well as the corresponding Peclet number
(Pe = qinLwcpl/hfgkeff). For example, at Qin = 100 W, Pe is
on the order of 10�2. Therefore, the contribution from
the convective terms could be neglected. Therefore, in the
earlier solutions [3–5], the Laplace equation for the temper-
ature is solved instead of the full energy equation. With this
assumption, the Darcy and energy equations are also
decoupled, which significantly simplifies the solution algo-
rithm. However, at higher heat loads, the convective terms
need to be taken account as is done in [6]. In our study, we
keep the convective terms in the governing equations and
solve together the mass conservation, Darcy and energy
equations as a coupled problem.

The determination of the effective thermal conductivity
of the wick keff is not trivial as it depends in a complex man-
ner on the geometry of the porous medium. The solution on
Fig. 5 is obtained by assuming that there is no heat transfer
between the solid porous matrix and fluid (heat transfer in
parallel). This is a well-known correlation obtained by the
weighted arithmetic mean of kl and kw (keff = ukl + (1 � u)
kw), where u is the wick porosity. A number of relations for
the prediction of keff is proposed in the literature. To inves-
tigate the effect of keff on the results, the same problem is
solved for the all-liquid wick case by using six different
correlations in addition to the weighted arithmetic mean.
These are weighted harmonic (heat transfer in series) and
geometric means of the thermal conductivities of kw

and kl, and other relations developed by Maxwell [17],
Krupiczka [18], Zehner and Schlunder [19], and Alexander
[20]. Fig. 6 represents the results obtained by using the dif-
ferent keff values at an arbitrarily chosen location of h = 80�.
The change of slope indicates the wick and fin interface. The
temperature profiles directly depend on keff. The series and
parallel arrangements represent the highest and lowest con-
ductivities, respectively. The other relations are intermedi-
ate between these two. One specific difficulty is that the
correlations produce significantly different values when
the thermal conductivities of the porous medium and fluid
are greatly different from each other as previously studied
in Nield [21]. As an example, the ratio of the thermal con-
ductivities for the liquid and vapor regions of the wick at
Tsat = 7.81 �C are kl/kw = 0.0362 and kv/kw = 0.0017,
respectively. There is therefore further difficulty when both
of the phases are present inside the wick. A given relation
for keff will not have the same accuracy for the liquid and
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vapor regions. The effective thermal conductivity keff

obtained by using different relations are given in Table 1.
The results vary significantly. There is clearly a need for
experimental data for an accurate determination of keff. In
the lack of experimental data, we use the parallel arrange-
ment for the rest of the numerical calculations. This is also
used in several previous works [3–6]. As shown in Fig. 6, the
different values of keff lead to the qualitatively similar tem-
perature profiles. The largest temperature difference
between the parallel and series solutions was within 0.5 K.
The difference in temperature is small because of the low
Peclet numbers. At the lower limit, as Pe! 0, the energy
equation reduces to the Laplace equation for temperature
and the influence of keff on the temperature distribution is
primarily through the flux boundary conditions. Note that
the temperature at the core is imposed as a boundary con-
dition and it has the same value for all cases.

The adequacy of using the Darcy’s law for describing
the flow inside the wick is also considered. For example,
Cao and Faghri [6] use an expression from analogy with
Navier–Stokes equation for the flow inside the porous
medium, which takes into account the convective (u Æ $)u/u
and viscous transport l/u($2u) terms in addition to the
Darcy’s law. Especially at high heat flux rates, the non-
Darcy flow behavior could be important. Beck [22] has
showed that the inclusion of the convection term in the
Darcy equation may lead to an under or over specified sys-
Table 1
The effective thermal conductivity values for the liquid and vapor regions
computed from different correlations

Relation kl (W m�1 K�1) kv (W m�1 K�1)

Harmonic mean
(series arrangement)

0.849 0.040

Alexandre [20] 1.054 0.093
Zehner and Schlunder [19] 1.684 0.148
Krupiczka [18] 1.756 0.152
Geometric mean 1.967 0.309
Maxwell [17] 4.845 4.450
Arithmetic mean

(parallel arrangement)
6.073 5.774
tem of equations. Similar conclusions have also been
reported in [23]. For these reasons, we do not take into
account the convective terms. The maximum Reynolds
number based on the effective pore diameter of the wick
of 2.4 lm is on the order of 10�2, which occurs in the vapor
region near the fin edge. Therefore, the quadratic inertia
terms are negligible in both the vapor and liquid regions.
A comparison of the results obtained from Darcy and
Brinkman equations for the all-liquid wick case showed
that contribution from the Brinkman terms can also be
safely neglected. As a result, the non-Darcy flow effects
could be ignored without penalty.

At sufficiently high heat flux values, it is expected that
the nucleation will start at the microscopic cavities at the
fin–wick interface. The boiling can initiate at small super-
heat values as a result of trapped gas in these cavities.
The vapor bubbles formed at the fin–wick interface unite
and lead to the formation of a vapor–liquid interface inside
the wick as originally suggested by Demidov and Yatsenko
[3]. With increasing heat flux, the vapor–liquid interface
recedes further into the wick because of the increased evap-
oration and insufficient supply of the returning subcooled
liquid. Thus, the vapor zone under the fin continues to
grow in size and starts connecting with the vapor grooves.
For a given heat load, there exists a steady-state solution
for which the heat transferred to the wick from the fin sur-
face is balanced by the convective heat output to the
vapor–groove interface where the evaporation takes place.
As the applied heat load is increased, the vapor region
under the fin grows. For sufficiently large applied heat
load, no converged solution is possible unless the removal
of vapor from the interface inside the wick is allowed from
the wick–groove interface.

For the transition from the all-liquid wick to the vapor–
liquid wick, a boiling incipient superheat value is assumed.
It is difficult to predict the incipient superheat, which
depends on several parameters in a complex manner. In
our calculations, when the liquid temperature under the
fin is 4 �C higher than Tsat, it is assumed that a vapor
region will form under the fin. Then, a new solution is
obtained by using the numerical procedure outlined for
the vapor–liquid wick. These results provide a reference
base for the boiling analysis of the LHP using nuclear clus-
ter theory, which will be addressed later in the paper. Fig. 7
represents the results obtained at a heat load of
Qin = 300 W. The LHP saturation temperature and pres-
sure drop is Tsat = 11.03 �C and Dp = 2181 Pa, respec-
tively. It should be noted that the one-dimensional model
does not take into account the presence of a vapor region
inside the wick. The change on the wick effective thermal
conductivity in the presence of vapor zone needs to be esti-
mated to improve the calculations of the boundary condi-
tions from the one-dimensional model. An iterative
procedure between the one- and two-dimensional models
could be more representative. However, this would be com-
putationally intensive and no significant change in the
overall results is expected. Other required numerical values
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are calculated in the same way as previously explained for
the liquid-saturated wick. Because of the large density
difference between the liquid and vapor phases, the velocity
for each phase is significantly different. In plotting the
results, different scale factors are used for each phase as
shown in Fig. 7. The highest velocities occur at the small
section of the wick–groove border, which is the only out-
flow boundary for the vapor generated at the interface
inside the wick. The applied heat is carried to the vapor–
liquid interface mainly by conduction since the convection
inside the vapor zone is weak and decreases with the grow-
ing size of the vapor region. The surface evaporation on the
wick–groove border of the liquid-saturated section is
reduced in comparison to the solution obtained with the
all-liquid wick. This is due to the fact that the applied heat
directly flows to the most active region of the evaporation,
which is now at the vapor–liquid interface inside the wick.

As the applied heat load is increased, the vapor–liquid
front inside the wick continues moving away from the fin
and the size of the vapor region enlarges. Fig. 8 compares
the temperature profiles on the outer surface of the casing
for four different heat loads. In each case, not surprisingly,
the maximum temperature is reached at the mid-point on
the casing outer surface at h = 45�. The maximum temper-
ature increases with the applied heat load as expected. The
variation of (Tmax � Tsat) as a function of the applied heat
flux is shown in Fig. 9. The temperature difference increases
with the heat load. At low heat loads, the temperature
difference is small when the wick is completely liquid filled.
The first change in slope is due to the initiation of the vapor
region under the fin and the second change in slope occurs
when the vapor region extends towards the groove past the
fin corner region. The results presented in Fig. 9 are in
good agreement with the results of the pore network model
reported in [4].

The above calculations assume that the nucleation is ini-
tiated by vapor embryo trapped in the microcavities at the
fin–wick interface. As a result, the anticipated incipience
superheats are small, on the order of 1–4 �C. The boiling
in the wick can be delayed to higher superheats by improv-
ing the contact between the fin and wick and purifying the
working fluid to the greatest extent possible. In microchan-
nels, the superheat limit can be at the same order of mag-
nitude as that for homogenous nucleation for a pure
liquid [9]. According to Zhang et al. [24], this superheat
limit is the sufficient and necessary condition for the phase
change in microchannels. Zhang et al. [24] also explain that
the rate of phase change in microchannels is very rapid on
the order of milliseconds, resulting in explosive or flash-like
evaporation. This phenomena is not observed for macro-
channels (several hundred microns and higher), where the
rate of phase change is on the order of seconds. Without
referring to flash-like evaporation, Cao and Faghri [6] have
previously described that at high heat fluxes, the bubbles
could be expulsed at such high pressures that they may
destroy the capillary meniscus, leading to a boiling limit.
This is considered as a heat transfer limit since the wick
dry-out is associated with the nucleate boiling in the wick.
To investigate such an explosive nucleation scenario, the
superheat limit in a porous structure needs to be estimated.
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Mishkinis and Ochterbeck [9] state that the classical heat-
pipe boiling limitation theory is not appropriate for the
capillary wicks used in LHPs and CPLs with pore sizes at
the same order of the nucleation site. Instead, they apply
the Kwak and Panton [10] cluster nucleation theory to
two-phase capillary pumped heat transfer devices. In this
study, we follow the method proposed in [9]. The porous
wick is modeled as a collection of the microchannels with
a diameter equal to the pore size. The critical nucleation
rate Jnc is calculated from the wick dry-out limit condition.
According to this criterion, the approximate completion
time required for phase change is equal to the time required
to replace the liquid inside the wick by the returning sub-
cooled liquid. Then, the following equation can be used
to estimate the critical nucleation rate Jnc:

J nc ¼
qin

hfgqlpðrptwÞ2
ð17Þ

Once the critical nucleation rate Jnc is estimated, the super-
heat limit can be calculated by using the cluster nucleation
theory. In Zhang et al. [24], the condition for flash-like
evaporation is that the completion time for phase change
should be smaller than the time required for a pressure
wave to travel from one wall to the opposite wall of a
microchannel. This assumption leads to higher nucleation
rates. However, as the superheat limit is a weak function
of the nucleation rate the final results are not strongly
affected by the choice of the completion time.

For a liquid-saturated wick, the maximum superheat is
expected to be just under the fin. For the calculation of
the boiling limit, the superheat limit is first calculated from
the cluster nucleation theory. Then, the maximum temper-
ature values under the fin are calculated for increasing heat
loads by solving the conservation equations for a liquid-
saturated wick. When the maximum temperature under
the fin is equal to the superheat limit, a flash-like evapora-
tion is expected for this heat load. Fig. 10 represents the
calculated superheat temperature and LHP boiling limits
as a function of the applied heat load based on the above
assumption. Note that these are theoretical limits for an
LHP with a high purity working fluid and good contact
at the wick–fin interface. The calculations indicate that
the LHP reaches the boiling limit at Qb = 395 W as shown
in Fig. 10. The experimental results obtained from this
LHP demonstrate that this LHP can operate up to 700 W
without any sign of dry-out. Therefore, these results seem
to be in support of the existence of a vapor region after
the boiling initiation under the fin, as originally suggested
by Demidov and Yatsenko [3]. In this case, the vapor bub-
bles have an escape path through the wick–groove opening
without destroying the meniscus. It is important to add
that the flash-like evaporation occurs spontaneously, creat-
ing possibly strong transient effects. However, the sustained
operation of the LHP seems to indicate that this dynamic
phenomenon does not have a detrimental effect on the
operation. When the vapor region grows sufficiently large
the direct contact between the fin and liquid inside the wick
ceases. In such a case, the boiling initiation will most likely
to occur just under the evaporating meniscus. It is in fact
very difficult to reach the boiling limitation under meniscus
as discussed in [9]. The vapor absolute pressure is much
higher than the capillary head. The typical value of the
ratio between the capillary head and vapor absolute pres-
sure in an LHP is less than 6%. As a result, the liquid under
the meniscus will stay in a metastable superheated state and
no boiling will occur. It should be added that the presence
of non-condensable gases can encourage the boiling
through the formation of a vapor embryo. Thus, the only
limitation for the LHP operation will be the available cap-
illary head. The one-dimensional model predicts the capil-
lary limit for this LHP at Qin = 1530 W. In Fig. 10, the
superheat and corresponding boiling heat transfer limits
calculated from the equations of state are also presented.
The superheat limits are obtained as an average of the
van der Walls and Berthelot spinodal equations as sug-
gested in Carey [11]. The results obtained by using the
two techniques are in good agreement as shown in
Fig. 10. The superheat predictions are within 4.1%. The
cluster nucleation method is more accurate; however, its
implementation is more involved.

A small gap between the fin and wick to improve the effi-
ciency of the evaporator in a CPL is suggested and analy-
tically studied in Figus et al. [25]. The main argument is that
a small gap could help venting of vapor through grooves
and decrease the vapor superheating. The increase in ther-
mal resistance due to the gap will be offset by a smaller
vapor region in the wick in the presence of a gap. The esti-
mation of the right gap size is obviously not easy. Based on
the results obtained in our study, we suggest that maintain-
ing a very good contact at the fin–wick interface will be
more beneficial for the LHP operation. At low heat loads,
the surface evaporation from the wick–groove interface will
prevail. As it is discussed previously, at higher heat loads
after the boiling incipience in the wick, the formation of a
vapor region under the fin will in fact help maintaining
the safe LHP operation. The influence of such a gap on boil-
ing initiation at start-up is a separate problem and needs to
be addressed as well. The experimental data obtained for a
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given evaporator design during the start-up tests show that
the superheat at the boiling incipience is stochastic. Dupont
et al. [26] study experimentally the effect of a gap on boiling
at start-up in a CPL. In this work, they show that a close fit
between the fin and wick in fact decreases the superheat,
where boiling starts smoothly on the wick. For a looser fit
on the order of 1 mm, the boiling is more violent and it
starts on the fin surface at higher superheats. This leads to
a sudden pressure rise and eventually deprime. As a result,
a good contact at the fin–wick interface seems to be a better
design choice to reduce the incipient superheat at start-up
and sustain the safe LHP operation.

5. Conclusions

The heat and mass transfer in the capillary porous struc-
ture of an LHP is investigated. The mass conservation,
Darcy and energy equations are solved numerically using
the finite element method. The solutions are obtained for
both all-liquid and vapor–liquid wick cases. When a vapor
region is present inside the wick, the interface is considered
to be sharp. The mass and energy balance conditions are
satisfied at the interface. The determination of the wick
effective thermal conductivity keff is particularly problem-
atic for the vapor–liquid wick since a given correlation
has different accuracies for the vapor and liquid regions.
However, the overall temperature distribution is not
strongly affected by the choice of correlation to predict keff.
The validity of the operation with a vapor pocket venting
into the grooves at high heat fluxes is studied. The super-
heat limits in a porous structure are calculated by using
the cluster nucleation theory to determine the boiling limit
as a result of explosive evaporation. The experimental
results indicate that at the heat loads predicted for explo-
sive evaporation, the LHP does not experience wick dry-
out. At high heat loads, when the liquid contact with the
fin comes to an end because of the enlarged vapor region,
the boiling initiation under the evaporating meniscus is
very unlikely. To increase the heat transfer limit for boil-
ing, it is desirable to maintain a very good contact at the
fin–wick interface along with the elimination of the non-
condensable gases. The present work offers a numerical
investigation in the explanation of the robustness of the
LHP operation.
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